SYLLABUS OF THE ACADEMIC DISCIPLINE «ELECTRICAL MATERIALS»

Academic degree Specialty

Academic program

Period of study Total workload Classroom workload: lectures: laboratory works: Language of study

	Bachelor					
	141 Electrical energetics,					
	electrical engineering and					
	electromechanics					
	Electrical energetics,					
	electrical engineering and					
	electromechanics					
	2 semester (4 term)					
	3 credits ECTS (90 hours)					
d:						
	2 hours					
	2 hours					
	English					

Course page in E-learning platform of DniproTech:

https://do.nmu.org.ua/course/view.php?id=5793

Teaching department

Electrical Engineering (EE)

Instructor:

Kolb Andrii Antonovych, Associate Professor, Candidate of Technical Sciences, Associate Professor of the Department of Electrical Engineering

Personal page http://vde.nmu.org.ua/ua/kafedra/kolb.php

E-mail: kolb.a.a@nmu.one

1. About this course

Within the discipline of **Electrical materials**, physical phenomena occurring in electrical materials under the action of electromagnetic fields are studied. The classification of materials is given, their properties and some technological processes of production are studied. Electrical materials are essential in the design of a variety of electrical devices and apparatus. Given the trend in modern electrical engineering to increase voltages and capacities, reduce the size and weight of machines and devices and increase reliability, the role of electrical materials is becoming significant.

2. Aim and objectives

The aim of the course – formation of competencies in the operation of electrical materials.

Course objectives:

- gaining knowledge and acquaintance with the types of electrical materials; understand the processes arising in electrical materials that are in the electric field;
- formation of abilities and skills to use the acquired knowledge at installation of electrotechnical materials in power installations and at measurement of various sizes.

3. Learning outcomes

Disciplinary learning outcomes:

- analyze processes in electric power, electrotechnical and electromechanical equipment, relevant complexes and systems, taking into account the properties of dielectric, conductive and magnetic materials;
- calculate the parameters of dielectric, conductive and magnetic materials used in the elements of electric power, electrotechnical and electromechanical complexes and systems.

4. Course structure

LECTURES				
1. Dielectric materials				
Polarization of dielectric materials in a constant electric field				
Electrical conductivity of dielectrics				
Electrical breakdown of dielectrics				
Thermal properties of dielectrics				
Some dielectric materials				
Application of dielectric materials in electrotechnical devices				
2. Conductive and magnetic materials				
Physical processes and phenomena in conductive materials				
Metals of high electrical conductivity				
Superconductors				
Metals of high electrical resistance				
Metals for various purposes				
Non-metallic conductive materials and products				
Physical processes and phenomena in magnetic materials				
Some magnetic materials				
LABORATORY CLASSES				
Study of the properties of electrical insulating materials				
Determination of electrical strength of liquid dielectrics				
Determination of volume and surface resistivities of solid dielectrics				
Investigation of dielectric polarization				
Study of the properties of magnetic materials				
Investigation of the properties of magnetic materials using an oscilloscope				
Determination of the specific magnetic resistance of ferromagnets				
Investigation of magnetic properties of plate samples using a ferrometer				

5. Technical equipment and/or software

Nº works	L ob titlo	Tools, equipment and software
(code)	Lab title	used in the work

ETM-1.1Study of the properties of electrical insulating materialsBox with prototypes of materialsETM-1.2Determination of electrical strength of liquidInstallation of AДI-70	electrical	
insulating materials materials		
ETM-1.2 Determination of electrical strength of liquid Installation of A III 70		
ETW-1.2 Determination of electrical strength of right installation of Adi-70	Installation of АДІ-70	
dielectrics Dielectric gloves	Dielectric gloves	
Dielectric boots		
Fuses		
ETM-1.3 Determination of bulk and surface specific Samples of dielectric m	aterials	
resistance of solid dielectrics Theraometer		
ETM-1.4 Investigation of dielectric polarization Samples of dielectric m	Samples of dielectric materials	
AC bridge		
Electrodes		
ETM-2.1 Study of the properties of magnetic Box with prototypes of	magnetic	
materials materials		
ETM-2.2 Investigation of the properties of magnetic Sample of magnetic magnetic magnetic	aterials	
materials by using an oscilloscope Integrator		
Oscillograph		
ETM-2.3 Determination of the specific magnetic Compensator		
resistance of ferromagnets Measuring instruments		
A sample of a ferromag	gnet	
Oscillograph		
ETM-2.4 The study of magnetic properties of the Plate sample and		
plate samples by using ferometra Ferrometer easuring		
instruments		

6. Evaluation system and requirements

6.1. The academic achievements of higher education applicants based on the results of the completion of the course will be evaluated on the scale below:

Rating	Institutional
90-100	Excellent
74 - 89	Good
60 - 73	Satisfactory
0 - 59	Fail

The general criteria for achieving the learning outcomes correspond to the descriptions of the 6th qualification level of the NQF.

6.2 Applicants for higher education can receive **a final grade** in this course based on the formative assessment of their knowledge, provided that the total number of points gained from the formative testing and independent work will be at least 60 points.

Maximum rating:

	The laboratory part			
Theoretical part	in time turn- ins	late turn-ins	Bonus	Total
65	30	20	5	100

The theoretical part is evaluated by the results of passing the test, which contains at least 40 questions.

1 hour is allotted for answering the questions of test control work

Laboratory works are accepted on control questions to each of work.

6.3. Criteria for evaluating the final work. At least 40 test tasks with four answer options, 1 correct answer is evaluated in 1 or 2 points depending on the difficulty (a total of 65 points). The test is conducted using Microsoft Office 365 technology.

6.4. Criteria for evaluating laboratory work. From each laboratory work the applicant of higher education can receive 5 points. The arithmetic mean of laboratory work is multiplied by 6.

7. Course policy

7.1. Policy on academic integrity. The academic integrity of higher education applicants is an important condition for mastering the learning outcomes of the course and obtaining satisfactory grades in formative and summative assessments. Academic integrity is based on the condemnation of the practices of cheating (writing with the involvement of external sources of information other than those authorized for use), plagiarism (reproduction of published texts of other authors without proper attribution), fabrication (inventing data or facts used in the educational process). The policy on academic integrity is regulated by the Regulation on system of prevention and detection of plagiarism at the Dnipro University of Technology (https://www.nmu.org.ua/ua/content/activity/us_documents.pdf)

If a higher education applicant violates academic integrity (cheating, plagiarism, fabrication), the assignment is graded unsatisfactory and must be repeated. In this case, the instructor reserves the right to change the topic of the assignment.

7.2. Communication policy. Applicants for higher education must have an activated corporate university email.

All written questions to the instructors regarding the course should be sent to the university email.

7.3. Policy on retakes. Assignments that are submitted late without valid reasons will be evaluated at a lower grade. Retakes of the summative assessment are allowed with the permission of the dean's office if there are valid reasons (e.g., sick leave).

7.4. Class attendance. Attendance at classes is mandatory for full-time applicants for higher education. Valid reasons for absence from classes are illness, participation in university events, and academic mobility, which must be confirmed by documents. A higher education applicant must notify the instructor either personally or through the leader of the academic group about the absence from class and the reasons for the absence.

For objective reasons (e.g. international mobility), studies may take place online with the consent of the course instructor.

7.5 Evaluation appeal policy. If a higher education applicant does not agree with the evaluation of his/her knowledge, he/she may appeal the grade assigned by the instructor in a prescribed manner.

7.6. Bonuses

Upon completion of the course the instructor can add up to **5 bonus points** to a total grade for the course for personal activity during lectures and laboratory classes, participation in scientific-technical conferences, seminars and other university activities.

8 Recommended readings

- 1. Electrical materials science: textbook / Oleksandr Aziukovskyi, Dmytro Tsyplenkov, Andrii Kolb. Ministry of education and science of Ukraine Dnipro university of technology – Dnipro: DniproTech, 2022. – 184 p.
- 2. Zhuravlyova LV, Bondar VM Electromaterials: Textbook. K .: Charter, 2006. 312 p.
- **3.** Handbook of electrical materials. In 3 volumes / Ed. Yu.V. Koritsky, V.V. Pasynkova, B.M. Tareeva. M .: Energoatomizdat, 1986. 368 p .; 1987. 464 p.; 1988. 728 p.
- **4.** Collection of methodical materials for laboratory work on discipline "Electrical Materials" (Section "Dielectric materials") for students studying specialty 141 "Electrical Power Engineering, Electrical Engineering and Electromechanics" / Kolb AA; Dnipro University of Technology D.: DniproTech, 2021. 32 p.
- 5. Collection of methodical materials for laboratory work on discipline "Electrical Materials" (Section "Magnetic materials") for students studying specialty 141 "Electrical Power Engineering, Electrical Engineering and Electromechanics" / Kolb AA; Dnipro University of Technology D.: DniproTech, 2021. 37 p.