Ministry of Education and Science of Ukraine Dnipro university of technology

Department of Electric Drive

«APPROVED» Head of Department Khudolii S.S. ___________ «30» August 2022

WORK PROGRAM OF THE ACADEMIC DISCIPLINE «Fundamentals of Electric Drives»

Field of study	14 Electrical engineering
Specialty	141 Electrical energetics, electrical
	engineering and electromechanics
Academic level	first (bachelor)
Academic program	«Electrical energetics, electrical
	engineering and electromechanics»
Specialization	-
Status	normative
Total workload	5 credits ECTS (150 hours)
Type of summative assessment	exam
Period of study	4 semester (7, 8 terms)
Language of study	English

Lecturer: Prof. Beshta O.S., Prof. Sadovoi O.V.

Prolonged: on: 20_/20_ a.y. ____(____) «_»_ 20_y. on 20_/20_ a.y. ____(____) «_»_ 20_y.

> Dnipro DNIPROTECH 2022

Work program of the academic discipline «Fundamentals of electric drives» for bachelors of the educational and professional program «Electrical energetics, electrical engineering and electromechanics» of the specialty 141 Electrical energetics, electrical engineering and electromechanics / Dnipro University of Technology, Department of Electric Drive. – D.: DNIPROTECH, 2022 – 14 p.

Authors:

– Beshta Oleksandr Stepanovych – Corresponding member of the National Academy of Sciences of Ukraine, Professor, Doctor of Technical Sciences, Professor of the Department of Electric Drive;

– Sadovoi Oleksandr Valentynovych – Professor, Doctor of Technical Sciences, Professor of the Department of Electric Drive.

The work program regulates:

- the aim of the discipline;
- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;
- basic disciplines;
- volume and distribution by forms of organization of the educational process and types of classes;
- discipline program (thematic plan by type of training);
- algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and assessment criteria);
- tools, equipment and software;
- recommended sources of information.

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

Approved by the decision of the Scientific and Methodological Commission of the specialty 141 Electrical energetics, electrical engineering and electromechanics (protocol No21/22-07 of 14.07.2022).

CONTENTS

1 AIM OF THE DISCIPLINE	4
2 INTENDED DISCIPLINARY LEARNING OUTCOMES	4
3 BASIC DISCIPLINES	4
4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES	5
5 DISCIPLINE PROGRAM BY TYPES OF CLASSES	5
6 KNOWLEDGE PROGRESS TESTING	7
6.1 Grading scales	7
6.2 Tools and procedures	7
6.3 Criteria	9
7 TOOLS, EQUIPMENT AND SOFTWARE	12
8 RECOMMENDED SOURCES OF INFORMATION	12

1 AIM OF THE DISCIPLINE

In the educational and professional program «Electrical energetics, electrical engineering and electromechanics» of the specialty 141 Electrical energetics, electrical engineering and electromechanics the distribution of program learning outcomes (PLO) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline $\Phi 4$ «Fundamentals of Electric Drives»:

ПР03	To know the principles of operation of electric machines, devices and automated electric drives and be able to use them to solve practical problems in professional activities
ПР07	To carry out the analysis of processes in the electric power, electrotechnical and
	electromechanical equipment, the corresponding complexes and systems
ПР08	To select and apply suitable methods for analysis and synthesis of electromechanical
	and electric power systems with specified parameters

The aim of the discipline is to form competencies in the construction, principle of action and analysis of processes in automated electric drives.

The implementation of the aim requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

Code	Disciplinary learning outcomes (DLO)		
PLO	Code DLO	Content	
ПР03	ПР03.1-Ф4	To determine the principles of construction and functioning of elements of control systems of electromechanical complexes.	
ПР07	ПР07.1-Ф4	Evaluate the parameters of electromechanical equipment and corresponding complexes and systems and develop measures to increase their energy efficiency and reliability.	
ПР08	ПР08.1-Ф4	Demonstrate skills in working with modern equipment, as well as performing calculations of modes of operation of electromechanical equipment, corresponding complexes and systems. Invent new ways to solve the problem of economic transformation	
		and use of electricity	

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

3 BASIC DISCIPLINES

Subjects	Achieved learning outcomes
Б5 «Theoretical foundations of	ΠΡ05 To know the basics of the theory of the
electrical engineering»	electromagnetic field, methods of calculating electric
	circuits and be able to use them to solve practical problems
	in professional activities.
Φ1 «Electric Machines»	$\Pi P03.1-\Phi 1$ To determine principle of construction and
	functioning of electric ma-chines units as part of electric
	power, electrical, and electromechanical complexes, and
	systems.
	ΠΡ03.2-Φ1 To assess working parameters of electric
	machines as part of electrical, electric power, and
	electromechanical equipment and relevant complexes and

Subjects	Achieved learning outcomes	
	systems, and to develop measures of their energy	
	efficiency and reliability improvement.	
Φ6 «Technical Mechanics»	ΠΡ07.1- $Φ$ 6 Compose and resolve equilibrium equations	
	for systems of forces, determine force factors and build	
	their diagrams.	
	$\Pi P07.2-\Phi 6$ Compose and solve the equation of motion of	
	material bodies.	
	ΠΡ07.3- $Φ$ 6 Find the kinematic characteristics of the	
	motion of solids.	
	ΠΡ07.4- $Φ$ 6 Use general theorems and principles of	
	dynamics for analysis, mechanical processes in machines	
	and devices of electromechanical equipment.	

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PROCESS ORGANIZATION AND TYPES OF CLASSES

	oa rs	Distribution by forms of education, hours						
Type of	7 orkloa Lhours	Full	Full-time		Full-time		Extramural	
classes	мo d h	Lecture	individual	Lecture	individual	Lecture	individual	
	1	classes	work	classes	work	classes	work	
lectures	78	34	44	-	-	8	70	
practical	23	8	15	-	-	-	23	
laboratory	49	17	32	-	-	6	43	
seminars	-	_	_	-	_	-	_	
TOTAL	150	59	91	-	-	14	136	

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Code		Volume of
DLO	Types and topics of training sessions	components,
DLO		hours
	LECTURES	78
ПР03.1-Ф4	1 Basics of electric drive mechanics	9
	The main trends and features of the development of the theory	
	and practice of modern electric drive. The purpose and	
	commitment of the discipline, its content and connection with	
	related disciplines.	
	Kinematical calculated schemes of the mechanical part of the	
	electric drive.	
	Equation of movement with unchanged and variable moments of	
	inertia.	
ПР07.1-Ф4	2 Electromechanical and mechanical characteristics of	18
	engines	
	Electromechanical properties, characteristics, and modes of	
	operation of DC motors	
	DC motors characteristics in brake modes	
	The characteristics and brake modes of the sequential excitation	
	engine	
	Electromechanical properties and characteristics of asynchronous	
	motors	
	The characteristics of an asynchronous motor in brake modes	
	Characteristics and modes of operation of synchronous engines	

ПР07.1-Ф4	3 Dynamics of electromechanical systems	10
	Transitional processes of electric drive with a linear mechanical	
	characteristic (start, reverse, braking).	
	Formation of transitional processes in controlled systems -	
	engine.	
ПР07.1-Ф4	4 Electric drive coordinates	20
	Rheostatal control of DC and AC motors	
	Parametric means of adjusting the speed of asynchronous engines.	
	Typical electric drive structures when managing coordinates	
	Features of current and speed adjustment in the system VSC-DCV	
	converter	
	Features of current and speed adjustment in the GD system	
	Features of current and speed adjustment in the system frequency	
	converter-asynchronous motor	
	Features of current adjustment and speed of synchronous motors	
ПР08.2-Ф4	5 Energetics of Electric drive	11
ПР07.1-Ф4	Electric drive energy. Energy loss in established and transitional	
	modes.	
	Energy efficiency and adjustable electric drive indicators	
	Energy characteristics of managed rectifiers	
	Impact of managed rectifiers on a nutrient network and a means	
	of reducing it	1.0
ПР08.1-Ф4	6 Principles of Calculation of Electrical Power	10
	Classification of modes of operation of electric motors	
	Construction of a load diagram	
	Methods for selecting and checking the engine by heating	40
	LABORATORY WORKS	49
ПР07.1-Ф4	Experimental determination of the moment of inertia	6
ПР07.1-Ф4	Investigation of mechanical characteristics of the DC motor of independent excitation	8
ПР07.1-Ф4	Investigation of mechanical characteristics of the DC motor of	8
	successive excitation	
ПР07.1-Ф4	Investigation of the mechanical characteristics of the asynchronous	9
	engine	
ПР07.1-Ф4	Investigation of the characteristics of the GM system	9
ПР07.1-Ф4	Investigation of the characteristics of the TC-M system	9
	PRACTICAL WORKS	23
ПР08.1-Ф4	Renovation of resistance moments, moments of inertia and masses	6
	to engine speed	
ПР08.1-Ф4	Reducing the moments of resistance and inertia to the moving mass	6
ПР08.1-Ф4	Construction of mechanical characteristics of the DC motor in	3
	engine mode and brake mode	2
ПР08.1-Ф4	Construction of mechanical characteristics of an asynchronous	3
	engine in engine mode and brake mode	e e
ПР08.1-Ф4	Calculation of engine power by loading chart	5

For the implementation of the hybrid form of teaching students, the electronic resource of the e-learning in the discipline is used at the following address: https://do.nmu.org.ua/course/view.php?id=3174

6 KNOWLEDGE PROGRESS TESTING

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 Grading scales

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

Rating	Institutional
90 100	відмінно / Excellent
74 89	добре / Good
60 73	задовільно / Satisfactory
0 59	незадовільно / Fail

The scales of assessment of learning outcomes of the DNIPROTECH students

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in accordance with the Regulations on the Organization of the Educational Process of DNIPROTECH.

6.2 Tools and procedures

The content of diagnostic tools is aimed at controlling the level of knowledge, proficiency/skills, communication, autonomy, and responsibility of the student according to the requirements of the National Qualifications Framework (NQF) up to the 6th qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks for the formative and summative knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the formative and summative knowledge progress testing are approved by the department.

Types of diagnostic tools and procedures for evaluating the formative and summative knowledge progress testing are given below.

FORMATIVE ASSESSMENT			SUMMATIVE ASSESSMENT		
training sessions	diagnostic tools	procedures	diagnostic tools	procedures	
lectures	control tasks for each topic	performing the task during lectures		determination of the weighted average result of	
practical	control tasks for each topic	performing tasks during practical classes	complex	formative assessments; performing CCW during	
	individual task	performing tasks during independent work	control work (CCW)	the exam at the request of the student	
laboratory	control tasks for each laboratory work	performing tasks during laboratory works and their defense			

Diagnostic and assessment procedures

During the formative assessment, lecture classes are evaluated by determining the quality of performance of specific control tasks. Practical classes are assessed by the quality of the control and individual tasks. Laboratory work is assessed by the quality of its performance and defense.

If the content of a certain type of classes is subordinated to several components of the description of the qualification level according to the NQF, the integral value of the grade can be determined taking into account the weighting coefficients set by the lecturer.

Provided that the level of results of the formative assessments of all types of training at least 60 points, the summative assessment can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the formative assessments, every student during the summative knowledge progress testing has the right to perform the CCW, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CCW should be consistent with the allotted time for completion. The number of CCW options should ensure that the task is individualized.

The value of the mark for the implementation of the CCW is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the assessment of the implementation of the CCW can be determined taking into account the weighting coefficients established by the department for each component of the description of the qualification level of the NQF.

6.3 Criteria

Actual student learning outcomes are identified and measured relative to what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of learning outcomes.

To assess the performance of control tasks during the formative assessment on lectures, laboratory and practical classes the coefficient of mastery is used as a criterion, which automatically adapts the assessment indicator to the rating scale:

$$O_i = 100 \ a/m$$
,

where a is a number of correct answers or significant operations performed in accordance with the solution standard; m is the total number of questions or significant operations of the standard.

Individual tasks and complex control works are assessed expertly using criteria that characterize the ratio of requirements to the level of competencies and indicators of assessment on a rating scale.

The content of the criteria is based on the competency characteristics defined by the NQF for the bachelor's level of higher education (given below).

Description of	<i>for the 6^m qualification level of NQF (bachelor)</i> Requirements for knowledge, proficiency/skills,	Indicator
qualification level	ualification level communication, autonomy and responsibility	
	Knowleges	
Conceptual scientific	The answer is excellent - correct, reasonable,	95-100
and practical	meaningful.	
knowledge, critical	Characterizes the presence of:	
understanding of	- conceptual knowledge;	
theories, principles,	- high degree of knowledge of the state of the art;	
methods and	- critical understanding of the basic theories, principles,	
concepts in the field	methods and concepts in education and professional	
of professional	activity	
activity and / or	The answer contains minor errors or omissions	90-94
training	The answer is correct, but has some inaccuracies	85-89
	The answer is correct, but has some inaccuracies and is	80-84
	insufficiently substantiated	
	The answer is correct, but has some inaccuracies,	74-79
	insufficiently substantiated and meaningful	
	The answer is fragmentary	70-73
	The answer shows the student's vague ideas about the	65-69
	object of study	
	The level of knowledge is minimally satisfactory	60-64
	The level of knowledge is unsatisfactory	<60
	Proficiency/Skills	
In-depth cognitive	The answer characterizes the ability to:	95-100
and practical skills,	- identify problems;	
mastery and	- formulate hypotheses;	
innovation at the level	- solve problems;	
required to solve	- choose appropriate methods and tools;	

General criteria for achieving learning outcomes for the 6th auglification level of NOF (bachelor)

Description of	Requirements for knowledge, proficiency/skills,	Indicator
qualification level	communication, autonomy and responsibility	evaluation
complex specialized	- collect and interpret information logically and	
tasks and practical	clearly;	
problems in the field	- use innovative approaches to solving problems	
of professional	The answer characterizes the ability to apply knowledge	90-94
activity or training	in practice with minor errors	
	The answer characterizes the ability to apply knowledge	85-89
	in practice, but has some inaccuracies in the	
	implementation of one requirement	
	The answer characterizes the ability to apply knowledge	80-84
	in practice, but has some inaccuracies in the	
	implementation of the two requirements	
	The answer characterizes the ability to apply knowledge	74-79
	in practice, but has some inaccuracies in the	
	implementation of the three requirements	
	The answer characterizes the ability to apply knowledge	70-73
	in practice, but has some inaccuracies in the	10 12
	implementation of the four requirements	
	The answer characterizes the ability to apply knowledge	65-69
	in practice when performing tasks on the model	05-07
	The answer characterizes the ability to apply knowledge	60-64
	in performing tasks on the model, but with inaccuracies	00-04
	The level of skills is unsatisfactory	<60
	<i>Communication</i>	<00
non-onting to		95-100
 reporting to 	Fluency in industry issues.	95-100
specialists and non-	Clarity of the answer (report). Language:	
specialists	- correct;	
information, ideas,	- clean;	
problems, solutions,	- clear;	
own experience and	- accurate;	
argumentation	- logical;	
• data collection,	- expressive;	
interpretation and	- concise.	
application	Communication strategy:	
• communication on	- consistent and consistent development of thought;	
professional issues,	- the presence of logical own judgments;	
including in a	- appropriate reasoning and its compliance with the	
foreign language,	defended provisions;	
orally and in	- correct structure of the answer (report);	
writing	- correct answers to questions;	
	- appropriate technique for answering questions;	
	- ability to draw conclusions and formulate proposals;	
	Sufficient knowledge of industry issues with minor	90-94
	flaws.	
	Sufficient clarity of the answer (report) with minor	
	flaws.	
	Relevant communication strategy with minor flaws.	
	Good knowledge of industry issues.	85-89
	Good clarity of the answer (report) and appropriate	
	communication strategy (three requirements in total are	
	not realized)	

Description of qualification level	Requirements for knowledge, proficiency/skills, communication, autonomy and responsibility	Indicator evaluation
	Good knowledge of industry issues.	80-84
	Good clarity of the answer (report) and appropriate	
	communication strategy (four requirements not	
	implemented in total)	
	Good knowledge of industry issues.	74-79
	Good clarity of the answer (report) and appropriate	
	communication strategy (five requirements not	
	implemented in total)	
	Satisfactory knowledge of industry issues.	70-73
	Satisfactory clarity of the answer (report) and	
	appropriate communication strategy (a total of seven	
	requirements have not been implemented)	
	Partial knowledge of industry issues.	65-69
	Satisfactory clarity of the answer (report) and	
	communication strategy with errors (a total of nine	
	requirements are not implemented)	
	Partial knowledge of industry issues.	60-64
	Satisfactory clarity of the answer (report) and	00 01
	communication strategy with errors (a total of 10	
	requirements are not implemented)	
	The level of communication is unsatisfactory	<60
	Autonomy and responsibility	<00
 managing complex 	Excellent command of personal management	95-100
technical or	competencies focused on:	<i>JJ</i> -100
professional activities	1) management of complex projects, which involves:	
or projects	- research nature of educational activities, marked by the	
 ability to take 	ability to independently assess various life situations,	
responsibility for	phenomena, facts, identify and defend a personal	
making and making	position;	
decisions in	- ability to work in a team;	
unpredictable work	- control of own actions;	
and / or learning	2) responsibility for decision-making in unpredictable	
contexts	conditions, including:	
• formation of	- justification of own decisions by the provisions of the	
judgments that take	regulatory framework of the industry and state levels;	
into account social,	- independence in the performance of tasks;	
scientific and ethical	- initiative in discussing problems;	
aspects	- responsibility for relationships;	
• organization and	3) responsibility for the professional development of	
management of	individuals and/or groups of individuals, which involves	
professional	- use of professionally oriented skills;	
*		
development of individuals and	- use of evidence with independent and correct	
	argumentation;	
groups	- mastery of all types of learning activities;	
• ability to continue	4) the ability to continue learning with a high level of	
studies with a	autonomy, which includes	
significant degree of	- the degree of mastery of fundamental knowledge;	
autonomy	- independence of evaluative judgments;	
	- a high level of general learning skills;	

Description of qualification level	Requirements for knowledge, proficiency/skills, communication, autonomy and responsibility	Indicator evaluation
	independent search and analysis of information	
	sources	
	Good mastery of personality management competencies (two requirements not met)	90-94
	Good mastery of personality management competencies (three requirements not met)	85-89
	Good mastery of personality management competencies (four requirements not met)	80-84
	Good mastery of personality management competencies (six requirements not met)	74-79
	Satisfactory mastery of personality management competencies (seven requirements not met)	70-73
	Satisfactory mastery of personality management competencies (eight requirements not met)	65-69
	The level of responsibility and autonomy is fragmentary	60-64
	The level of autonomy and responsibility is unsatisfactory	<60

7 TOOLS, EQUIPMENT AND SOFTWARE

Technical means of training.

Remote platform MOODLE, MS Teams.

8 RECOMMENDED SOURCES OF INFORMATION

Basic:

1. Електропривод: Навчальний посібник / Закладний О.М., Прокопенко В.В., Закладний О.О. – Київ: Вища школа, 2009.- 351 с.

2. Теорія електропривода: Підручник / М.Г. Попович, М.Г. Борисюк, В.А. Гаврилюк та ін.; за ред. М.Г. Поповича. –К.: Вища шк., 1993. -494 с.

3. Теорія електроприводу: Збірник задач / Булгар В.В. - Одеса: Поліграф, 2006. – 408 с.

4. Колб Ант.А., Колб А.А. Теорія електроприводу [Текст]: навч. посібник. – 2-ге вид., перероб. і доп. – Д.: Національний гірничий університет, 2011. – 565 с.

5. Колб А.А. Основи електроприводу. Методичні рекомендації до виконання лабораторних робіт для бакалаврів спеціальності 141 Електроенергетика, електротехніка та електромеханіка / А.А. Колб, Г.Г. Дяченко, О.В. Садовой; Нац. техн. ун–т. «Дніпровська політехніка». – Д.: НТУ «ДП», 2021. – 50 с.

6. Колб А.А. Основи електроприводу. Методичні рекомендації до практичних занять для бакалаврів спеціальності 141 Електроенергетика, електротехніка та електромеханіка / А.А. Колб, Г.Г. Дяченко, О.В. Садовой; Нац. техн. ун–т. «Дніпровська політехніка». – Д.: НТУ «ДП», 2021. – 83 с.

Additional:

1. Попович М.Г., Лозинський О.Ю., Клепіков В.Б. та інш. Електромеханічні системи автоматичного керування та електроприводи. Навч. посіб. за напрямом «Електромеханіка» / М.Г. Попович, О.Ю. Лозинський, В.Б. Клепіков та інш. – К.: Либідь, 2005. Ч1.– 397 с.; Ч2. – 680 с.

2. Попович М.Г., Ковальчук О.В. Теорія автоматичного керування: Підручник. – К.: Либідь, 1997. – 544 с.

3. Піцан Р., Барадачевский В., Бойчук Б. Збірник задач до курсу «Електропривод». – Львів, Видавництво «Львівська політехніка», 1999. – 426 с

Information resources:

Література на сайті кафедри електропривода: https://elprivod.nmu.org.ua/ua/books/automaticED.php

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

«Fundamentals of Electric Drives» for bachelors of the educational and professional program «Electrical energetics, electrical engineering and electromechanics» of the specialty 141 Electrical energetics, electrical engineering and electromechanics

> Authors: Oleksandr Stepanovych Beshta Oleksandr Valentynovych Sadovoi

> > Editorial by the authors

Prepared for publication Dnipro University of Technology. Certificate of registration in the State Register ДК № 1842 49005, Dnipro, Dmytra Yavornytskoho Ave. 19