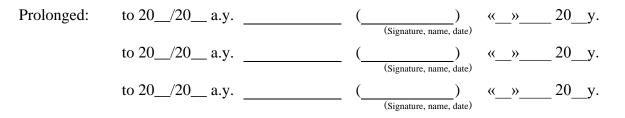
Ministry of Education and Science of Ukraine Dnipro University of Technology

Department of Electrical Engineering


«APPROVED» Head of Department Tsyplenkov D.V. _________ «<u>30</u>» <u>August</u> 2022

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

«Theoretical foundations of electrical engineering»

Field of study	14 Electrical Engineering
Specialty	141 Electrical energetics, electrical engi- neering and electromechanics
Academic level	first (bachelor)
Academic program	«Electrical energetics, electrical engineer- ing and electromechanics»
Specialization	_
Status	normative
Total workload	9 credits ECTS (270 hours)
Type of summative assessment	exam
Period of study	2-4 semesters (3-7 terms)
Language of study	English

Lecturer: Prof. Khilov V.S.

DNIPRO DNIPROTECH 2022 Work program of the academic discipline «Theoretical foundations of electrical engineering» for bachelors of the educational and professional program «Electrical energetics, electrical engineering and electromechanics» of the specialty 141 Electrical energetics, electrical engineering and electromechanics / Dnipro University of Technology, Department of Electrical Engineering. – D.: DNIPROTECH, 2022 – 18 p.

Author:

- Khilov Viktor Serhiiovych - Professor, Doctor of Technical Sciences, Professor of the Department of Electrical Engineering.

The work program regulates:

- the aim of the discipline;
- the disciplinary learning outcomes generated through the transformation of the intended learning outcomes of the degree program;
- basic disciplines;
- volume and distribution by forms of organization of the educational process and types of classes;
- discipline program (thematic plan by type of training);
- algorithm for assessing the level of achievement of disciplinary learning outcomes (scales, tools, procedures and assessment criteria);
- tools, equipment and software;
- recommended sources of information.

The work program is designed to implement a competency approach in planning an education process, delivery of the academic discipline, preparing students for control activities, controlling the implementation of educational activities, internal and external quality assurance in higher education, accreditation of degree programs within the specialty.

Approved by the decision of the Scientific and Methodological Commission of the specialty 141 Electrical energetics, electrical engineering and electromechanics (protocol №21/22-07 of 14.07.2022).

CONTENTS

1 AIM OF THE DISCIPLINE	4
2 INTENDED DISCIPLINARY LEARNING OUTCOMES	4
3 BASIC DISCIPLINES	4
4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PR ORGANIZATION AND TYPES OF CLASSES	
5 DISCIPLINE PROGRAM BY TYPES OF CLASSES	5
6 EVALUATION OF LEARNING OUTCOMES	
6.1 Grading scales	
6.2 Tools and procedures	
6.3 Criteria	
7 TOOLS, EQUIPMENT AND SOFTWARE	15
8. RECOMMENDED SOURCES OF INFORMATION	16

1 AIM OF THE DISCIPLINE

In the educational and professional program «Electrical energetics, electrical engineering and electromechanics» of the specialty 141 Electrical energetics, electrical engineering and electromechanics the distribution of program learning outcomes (PLO) for the organizational forms of the educational process is done. In particular, the following learning outcomes are attributed to the discipline B5 «Theoretical foundations of electrical engineering»:

PLO05 To know the basics of the theory of the electromagnetic field, methods of calculating electric circuits and be able to use them to solve practical problems in professional activities

The aim of the discipline – development of future professionals' competencies in solving practical problems involving the methods of mathematics, physics and electrical engineering, as well as complex specialized tasks and practical problems related to the operation of electrical systems and networks, electrical parts of stations and substations and high voltage engineering by mastering the basics of electromagnetic field theory, methods of calculating electrical circuits and acquiring skills in their use.

The implementation of the aim requires transforming program learning outcomes into the disciplinary ones as well as an adequate selection of the contents of the discipline according to this criterion.

Code	Disciplinary learning outcomes (DLO)			
PLO	Code DLO	content		
PLO05	PLO05.1-65	Know the methods for calculating DC electrical circuits and be able to use them to solve specialized problems		
	PLO05.2-65	Know the methods for calculating single-phase alternating current elec- trical circuits and be able to use them to solve specialized problems		
	PLO05.3-Б5	Know the methods of calculating three-phase alternating current electri- cal circuits and be able to use them to solve specialized problems and practical problems		
	PLO05.4-65	Know the methods of analysis and calculation of nonlinear electrical circuits and be able to use them to solve specialized problems and prac- tical problems		
	PLO05.5-Б5	Know the fundamentals of the theory of four-pole circuits, passive fil- ters and circuits with distributed parameters and be able to use them to solve specialized tasks and practical problems		
	PLO05.6-Б5	Know the fundamentals of electromagnetic field theory and be able to use them to solve specialized tasks and practical problems		
	<mark>PLO05.6-Б5</mark>	Master the methods of analyzing transients in electrical circuits and be able to use them to solve specialized problems and practical problems		

2 INTENDED DISCIPLINARY LEARNING OUTCOMES

3 BASIC DISCIPLINES

Discipline name Learning outcomes obtained				
E3 «Computing and programming»	PLO06 To apply application software, microcontrollers and microprocessor technology to solve practical problems in pro- fessional activities			

Discipline name	Learning outcomes obtained			
	PLO18 To be able to learn independently, acquire new knowledge and improve skills in working with modern			
	equipment, measuring equipment and application software			

4 WORKLOAD DISTRIBUTION BY THE FORM OF EDUCATIONAL PRO-CESS ORGANIZATION AND TYPES OF CLASSES

	Distribution by forms of education, hours							
Types of	Full-time		Part-time		Extramural			
classes	Vol- ume	Classes (C)	Individual work (IW)	Classes (C)	Individual work (IW)	Vol- ume	Classes (C)	Individ- ual work (IW)
lectures	128	78	50			128	18	110
practical	63	30	33			63	8	55
laboratory	79	37	42			79	8	71
seminars	-	-	_			-	-	-
Total	270	145	125			270	34	236

5 DISCIPLINE PROGRAM BY TYPES OF CLASSES

Code DLO	Types and topics of training sessions	Volume of compo- nents, hours
PLO05.1-Б5	LECTURES	128
	1. Linear DC circuits at steady state mode	14
	1.1. Introduction. Current, voltage, power, resistance, con- ductivity	
	1.2. Voltage and current sources	
	1.3. Dropping voltage across the section of the circle. Ohm's law.	
	1.4. Power balance in an electric DC circuit.	
	1.5. Methods for calculating resistive circuits.	
	1.6. Conclusions	
PLO05.2-Б5	2. Linear circuits of single-phase current at steady state mode	14
	2.1. Harmonic oscillations	
	2.2. Instant, average and rms value of harmonic voltages and currents	
	2.3. Representation of harmonic functions by vectors and complex numbers	
	2.4. Harmonic oscillations in elementary resistive, inductive and capacitive circuits	
	2.5. Harmonic oscillations in series-connected RLC elements	
	2.6. Harmonic oscillations in parallel-connected RLC ele- ments	
	2.7. Phase calculation method for branched circles with har- monic oscillations	
	2.8. Power balance in an AC circuit.	
	2.9. Resonance in AC electrical circuits.	
	2.10. Conclusions	
РLО05.2-Б5	3. Magnetically coupled linear circuits of single-phase cur- rent in a steady-state mode	10
	3.1. The phenomenon of mutual inductance. Coefficient of	
	mutual induction.	
	3.2. Series connection of magnetically coupled coils	
	3.4. Parallel connection of magnetically coupled coils	
	3.5. Methods for calculating circles with magnetically cou-	

	als to the second	
	pled elements	
	3.6. Power balance in circles with magnetically coupled ele-	
	ments. 3.7. Conclusions	
РLО05.3-Б5	4. Linear circuits of three-phase current in constant	10
FL005.5-D5	mode	10
	4.1. Multiphase electric circuits	
	4.2. Wye connection in three-phase circuits	
	4.3. Delta connection in three-phase circuits	
	4.4. Power balance in three-phase circuits. Power	
	measurement of a three-phase circuit.	
	4.5. Method of symmetrical components	
	4.6. Conclusions	
PLO05.2-Б5	5. Linear circuits of polyharmonic current in steady	10
PLO05.3-Б5	state mode	
	5.1. Representation of polyharmonic currents and volt-	
	ages by Fourier series	
	5.2. Calculation of circuits in the presence of polyhar-	
	monic currents and voltages sources	
	5.3. The rms value of polyharmonic currents and volt-	
	ages	
	5.4. Power balance in circuits with polyharmonic cur-	
	rents and voltages	
	5.5. Resonance in electrical circuits with polyharmonic	
	currents and voltages	
	5.6. Polyharmonic currents and voltages in three-phase	
	circuits	
	5.7. Conclusions	
PLO05.6-65	6. Classical and operator methods of analysis of transi-	14
	ents in linear circles with lumped parameters	
	6.1. The emergence of transients	
	6.2. Laws of switching in electric circuits	
	6.3. Transients, forced and natural processes in electri-	
	cal circuits	
	6.4. Definition of the characteristic equation	
	6.5. Definition of integration constants	
	6.6. The order of calculation by the classical method of	
	transients	
	6.6.1. Analysis of transients in linear circuits by the	
	classical method with one and two energy storage de-	
	6.7. Analysis of transients in linear circles by the opera-	
	tor method	
	6.7.1. Conversion originals to images	
	6.7.2. Laws of electric circuits in operator form	
	6.7.2. Calculation of operator equvalent circuits	
	6.7.3. The order of calculation by the operator method	
	of transients	
	6.7.4. Analysis of transients in linear circles by the op-	
	erator method	
	6.7.5. Conversion images to originals	

		1
	6.8. Calculation of the response of the circle to the sig-	
	nal of any shape	
	6.8.1. Using the Duhamel integral when connecting a	
	circuit to a signal of arbitrary shape	
	6.9. Conclusions	
PLO05.1-Б5	7. Nonlinear DC circuits in steady state mode	10
	7.1. Graphical representation of volt-ampere character-	
	istics of nonlinear elements	
	7.2. Static and dynamic resistances of nonlinear ele-	
	ments	
	7.3. Calculation of nonlinear circuits with series, paral-	
	lel and mixed connection of elements	
	7.4. Calculation of electrical circuits by the method of	
	equivalent generator	
	7.5. Calculation of electrical circuits by the method of	
	two nodes	
	7.6. Conclusions	
PLO05.2-Б5	8. Nonlinear AC circuit in steady state mode	8
	8.1. Features of periodic processes in nonlinear circuits	Ŭ
	with inertial elements	
	8.2. Coil with a steel cell powered by a harmonic volt-	
	age source. Equivalent harmonic currents and voltages	
	8.3. Equivalent circuit and vector diagram of coils with	
	steel core	
	8.4. Ferroresonance phenomenon	
	8.5. Ferroresonant voltage stabilizers, magnetic power	
	amplifiers, harmonic ferromagnetic separators	
	8.6. Features of the analysis of circuits with semicon- ductor diodes	
	8.7. Conclusions	0
PLO05.6-65	9. Analysis methods of transients in nonlinear circuits	8
	9.1. Stability of operation mode of nonlinear circles	
	9.2 Method of piecewise-linear approximation of the	
	self-oscillating circle	
	9.3. Methods for calculating transients in a coil with a	
	steel core	
	9.4. Representation of transients in the phase plane	
	9.5. Conclusions	
PLO05.5-Б5	10. Fundamentals of the theory of two-port circuits	9
	10.1. The equation of two-port circuits	
	10.2. Modes of open and short circuit of two-port cir-	
	cuits	
	10.3. Determining the parameters of two-port circuits	
	10.4. Matched impedance and propagation coefficient	
	of symmetric two-port circuits	
	10.5. Two-port circuits transfer functions and feedback	
	10.5. Two-port circuits transfer functions and feedback	
	10.5. Two-port circuits transfer functions and feedback 10.6. Conclusions	·
РLО05.5-Б5		8
PLO05.5-Б5	10.6. Conclusions	8
PLO05.5-Б5	10.6. Conclusions 11. Passive reactive filters	8

	11.4 High frequency filters	
	11.4. High frequency filters	
	11.5. Band pass filters	
	11.6. Band stop filters	
	11.7. Conclusions	
PLO05.5-Б5	12. Circles with distributed parameters	0
	12.1. Lumped and distributed parameters of electrical	8
	circuits	
	12.2. Equation of a homogeneous line	
	12.3. Solving homogeneous line equations in stationary	
	modes	
	12.4. Running and standing waves	
	12.4. Voltage and current distribution along a long line	
	12.5. Transients in homogeneous lines	
	12.6. Conclusions	
PLO05.6-Б5	13. Electrostatic field in a dielectric medium	4
	13.1. Vortex-free nature of the electrostatic field	
	13.2. Gauss's theorem	
	13.3. Poisson and Laplace equations	
	13.4. Boundary conditions	
	13.5. Electrostatic field energy density	
	13.6. Elementary electrostatic fields	
	13.7. Conclusions	
PLO05.6-Б5	14. The magnetic field of direct current	4
	14.1. The law of total current. Scalar magnetic potential	
	14.1. Vector magnetic potential	
	14.2. Boundary conditions	
	14.3. Magnetic field energy density	
	14.4. Elementary magnetic fields	
	14.5. Conclusions	
PLO05.6-65	15. Alternating electromagnetic field in a stationary	4
	medium	
	15.1. Displacement current	
	15.2. Maxwell's equation	
	15.3. Poiting's theorem	
	15.4. Flat waves in a homogeneous dielectric	
	15.5. Conclusions	
	LABORATORY CLASSES	79
PLO05.1-65	1. Linear DC circuits in steady state mode	10
	Research of a branched circle by the method of trans-	
	formations	
	Power transmission from active to passive one-port	
	circuits	
PLO05.2-Б5	2. Linear circuits of single-phase current in steady state	10
	mode	10
	Series connection of elements	
	Parallel connection of elements	
	Series resonance	
	Parallel resonance	
PLO05.2-Б5	3. Magnetically coupled linear circuits of single-phase	2
I LOUJ.2-DJ	current in steady state mode	2
	Series and parallel connection of magnetically coupled	
	series and paramet connection of magnetically coupled	

	coils	
PLO05.3-Б5		6
PL003.3-D3	4. Linear circuits of three-phase current in steady state mode	0
	Symmetrical three-phase source and symmetrical load	
	connected in a symmetrical and asymmetrical wye	
	Symmetrical three-phase source and symmetrical load	
	connected in a symmetrical and asymmetrical delta	
	Asymmetric three-phase source and symmetrical load	
	connected to a symmetrical wye	
PLO05.2-Б5	5. Linear circuits of polyharmonic current in steady	8
PLO05.3-Б5	state mode	
	Polyharmonic currents and voltages in single-phase	
	circuits	
	Polyharmonic currents and voltages in three-phase cir-	
	cuits	
PLO05.6-Б5	6. Classical and operator methods of analysis of transi-	10
	ents in linear circles with lumped parameters	
	Transients in the resistive-inductive circuit	
	Transients in the resistive-capacitive circuit	
	The discharge of the capacitor on the resistive-inductive	
	circuit	
PLO05.4-Б5	7. Nonlinear DC circuits in steady state mode	5
	Branched nonlinear DC circuit	
PLO05.4-Б5	8. Nonlinear alternating current circuits in steady state	5
	mode	
	Inductor with steel core on alternating current	
PLO05.6-Б5	9. Methods of analysis of transients in nonlinear circles	5
	Self-oscillation in a nonlinear circle	
PLO05.5-Б5	10. Fundamentals of the theory of two-port circuits	5
	Parameters of an asymmetric two-port circuits	
PLO05.5-Б5	12. Circles with distributed parameters	5
	Homogeneous long line	
PLO05.6-65	13. Electrostatic field in a dielectric medium	5
	Electrostatic field modeling	
PLO05.6-Б5	14. The magnetic field of direct current	5
	Magnetic field around a current-carrying conductor	5
	PRACTICAL TRAINING	63
PLO05.1-Б5	1. Linear DC circuits in steady state mode	6
РLО05.2-Б5	2. Linear circuits of single-phase current in steady state	6
1 1000.2-00	mode	0
PLO05.2-Б5	3. Magnetically coupled linear circuits of single-phase	6
	current in steady state mode	5
PLO05.3-Б5	4. Linear circuits of three-phase current in steady state	6
	mode	U U
PLO05.2-Б5	5. Linear circuits of polyharmonic current in steady	6
	state mode	U U
PLO05.6-65	6. Classical and operator methods of analysis of transi-	6
	ents in linear circles	č
PLO05.4-Б5	7. Nonlinear DC circuits in steady state mode	6
PLOU.).4-D.)		

	mode	
PLO05.5-Б5	9. Fundamentals of the theory of two-port circuits	5
PLO05.5-Б5	10. Passive reactive filters	5
PLO05.5-Б5	11. Circles with distributed parameters in steady state	5
	modes	
	TOTAL	270

For the implementation of the mixed form of education of students, the electronic resources of the e-learning platform in the discipline are used: https://do.nmu.org.ua/course/view.php?id=2632

6 EVALUATION OF LEARNING OUTCOMES

Certification of student achievement is accomplished through transparent procedures based on objective criteria in accordance with the University Regulations "On Evaluation of Higher Education Applicants' Learning Outcomes".

The level of competencies achieved in relation to the expectations, identified during the control activities, reflects the real result of the student's study of the discipline.

6.1 Grading scales

Assessment of academic achievement of students of the Dnipro University of Technology is carried out based on a rating (100-point) and institutional grading scales. The latter is necessary (in the official absence of a national scale) to convert (transfer) grades for mobile students.

Rating	Institutional
90 100	відмінно / Excellent
74 89	добре / Good
60 73	задовільно / Satisfactory
0 59	незадовільно / Fail

The scales of assessment of learning outcomes of the DNIPROTECH students

Discipline credits are scored if the student has a final grade of at least 60 points. A lower grade is considered to be an academic debt that is subject to liquidation in accordance with the Regulations on the Organization of the Educational Process of DNIPROTECH.

6.2 Tools and procedures

The content of diagnostic tools is aimed at controlling the level of knowledge, proficiency/skills, communication, autonomy, and responsibility of the student according to the requirements of the National Qualifications Framework (NQF) up to the 6th qualification level during the demonstration of the learning outcomes regulated by the work program.

During the control activities, the student should perform tasks focused solely on the demonstration of disciplinary learning outcomes (Section 2).

Diagnostic tools provided to students at the control activities in the form of tasks

for the formative and summative knowledge progress testing are formed by specifying the initial data and a way of demonstrating disciplinary learning outcomes.

Diagnostic tools (control tasks) for the formative and summative knowledge progress testing are approved by the department.

Types of diagnostic tools and procedures for evaluating the formative and summative knowledge progress testing are given below.

FORMATIVE ASSESSMENT		SUMMATIVE ASSESSMENT		
training sessions	diagnostic tools	procedures	diagnostic tools	procedures
Lectures	control tasks for each topic	performing the task during lectures		determination of the weighted average result of formative
Practical lessons	control tasks for each topic	performing tasks dur- ing practical classes	complex control	assessments;
Laboratory lessons	individual task	performing tasks dur- ing individual work, defence of laboratory works	work (CCW)	performing CCW during the differentiated test (2, 3 semes- ters), exam (4 semester) at the request of the student

Diagnostic and assessment procedures

During the current control, lectures are evaluated by determining the quality of control specific tasks. Practical classes are assessed by the quality of the control (individual) task. Laboratory classes are evaluated by the quality of performance and defense of laboratory work.

If the content of a certain type of classes is subordinated to several components of the description of the qualification level according to the NQF, the integral value of the grade can be determined taking into account the weighting coefficients set by the lecturer.

Provided that the level of results of the formative assessments of all types of training at least 60 points, the summative assessment can be carried out without the student's immediate participation by determining the weighted average value of the obtained grades.

Regardless of the results of the formative assessments, every student during the summative knowledge progress testing (differentiated test and exam) has the right to perform the CCW, which contains tasks covering key disciplinary learning outcomes.

The number of specific tasks of the CCW should be consistent with the allotted time for completion. The number of CCW options should ensure that the task is individualized.

The value of the mark for the implementation of the CCW is determined by the average evaluation of the components (specific tasks) and is final.

The integral value of the assessment of the implementation of the CCW can be determined taking into account the weighting coefficients established by the department for each component of the description of the qualification level of the NQF.

6.3 Criteria

Actual student learning outcomes are identified and measured relative to what is expected during the control activities using criteria that describe the student's actions to demonstrate the achievement of learning outcomes.

To assess the performance of control tasks during the formative assessment on lectures, laboratory and practical classes the coefficient of mastery is used as a criterion, which automatically adapts the assessment indicator to the rating scale:

$$O_i = 100 \ a/m$$
,

where a is a number of correct answers or significant operations performed in accordance with the solution standard; m is the total number of questions or significant operations of the standard.

Individual tasks and complex control works are assessed expertly using criteria that characterize the ratio of requirements to the level of competencies and indicators of assessment on a rating scale.

The content of the criteria is based on the competency characteristics defined by the NQF for the bachelor's level of higher education (given below).

for the 6 th qualification level of NQF (bachelor)				
Description of qualifi-	Requirements for knowledge, proficiency/skills,	Indicator		
cation level	communication, autonomy and responsibility	evaluation		
	Knowleges			
Conceptual scientific	The answer is excellent - correct, reasonable, meaningful.	95-100		
and practical	Characterizes the presence of:			
knowledge, critical	- conceptual knowledge;			
understanding of	- high degree of knowledge of the state of the art;			
theories, principles,	- critical understanding of the basic theories, principles,			
methods and concepts	methods and concepts in education and professional			
in the field of	activity			
professional activity	The answer contains minor errors or omissions	90-94		
and / or training	The answer is correct, but has some inaccuracies	85-89		
	The answer is correct, but has some inaccuracies and is	80-84		
	insufficiently substantiated			
	The answer is correct, but has some inaccuracies,	74-79		
	insufficiently substantiated and meaningful			
	The answer is fragmentary	70-73		
	The answer shows the student's vague ideas about the	65-69		
	object of study			
	The level of knowledge is minimally satisfactory	60-64		
	The level of knowledge is unsatisfactory	<60		
Proficiency/Skills				
In-depth cognitive and	The answer characterizes the ability to:	95-100		
practical skills,	- identify problems;			
mastery and innovation	- formulate hypotheses;			
at the level required to	- solve problems;			
solve complex	- choose appropriate methods and tools;			
specialized tasks and	- collect and interpret information logically and			

General criteria for achieving learning outcomes for the 6th aualification level of NOF (bachelor)

Description of qualifi- cation level	Requirements for knowledge, proficiency/skills, communication, autonomy and responsibility	Indicator evaluation
practical problems in	clearly;	c valuation
the field of	- use innovative approaches to solving problems	
professional activity or	The answer characterizes the ability to apply knowledge in	90-94
training	practice with minor errors	70 74
uuning	The answer characterizes the ability to apply knowledge in	85-89
	practice, but has some inaccuracies in the implementation	05 07
	of one requirement	
	The answer characterizes the ability to apply knowledge in	80-84
	practice, but has some inaccuracies in the implementation	00 04
	of the two requirements	
	The answer characterizes the ability to apply knowledge in	74-79
	practice, but has some inaccuracies in the implementation	/+-//
	of the three requirements	
	The answer characterizes the ability to apply knowledge in	70-73
	practice, but has some inaccuracies in the implementation	70-73
	of the four requirements	
	The answer characterizes the ability to apply knowledge in	65-69
	practice when performing tasks on the model	05-09
	The answer characterizes the ability to apply knowledge in	60-64
		00-04
	performing tasks on the model, but with inaccuracies The level of skills is unsatisfactory	<60
	Communication	<00
, ronorting to		95-100
 reporting to 	Fluency in industry issues.	93-100
specialists and non-	Clarity of the answer (report). Language:	
specialists	- correct; - clean;	
information, ideas,		
problems, solutions,	- clear;	
own experience and	- accurate;	
argumentation	- logical;	
data collection, intermetation and	- expressive; - concise.	
interpretation and		
application	Communication strategy:	
communication on	 consistent and consistent development of thought; the presence of logical own judgments; 	
professional issues,	- appropriate reasoning and its compliance with the	
including in a foreign	defended provisions;	
language, orally and	±	
in writing	- correct structure of the answer (report);	
	- correct answers to questions;	
	 appropriate technique for answering questions; ability to draw conclusions and formulate proposals; 	
		00.04
	Sufficient knowledge of industry issues with minor flaws.	90-94
	Sufficient clarity of the answer (report) with minor flaws.	
	Relevant communication strategy with minor flaws.	85-89
	Good knowledge of industry issues.	03-09
	Good clarity of the answer (report) and appropriate	
	communication strategy (three requirements in total are not	
	realized)	00.04
	Good knowledge of industry issues.	80-84
	Good clarity of the answer (report) and appropriate	
	communication strategy (four requirements not	

Description of qualifi- cation level	Requirements for knowledge, proficiency/skills, communication, autonomy and responsibility	Indicator evaluation
	implemented in total)	cvaluatioli
	Good knowledge of industry issues.	74-79
	Good clarity of the answer (report) and appropriate	/4-/9
	communication strategy (five requirements not	
	implemented in total)	
	Satisfactory knowledge of industry issues.	70-73
	Satisfactory clarity of the answer (report) and appropriate	70-73
	communication strategy (a total of seven requirements have	
	not been implemented)	
		65 60
	Partial knowledge of industry issues.	65-69
	Satisfactory clarity of the answer (report) and	
	communication strategy with errors (a total of nine	
	requirements are not implemented)	<i>c</i> 0 <i>c</i> 1
	Partial knowledge of industry issues.	60-64
	Satisfactory clarity of the answer (report) and	
	communication strategy with errors (a total of 10	
	requirements are not implemented)	
	The level of communication is unsatisfactory	<60
	Autonomy and responsibility	
managing complex	Excellent command of personal management competencies	95-100
technical or	focused on:	
professional activities	1) management of complex projects, which involves:	
or projects	- research nature of educational activities, marked by the	
ability to take	ability to independently assess various life situations,	
responsibility for	phenomena, facts, identify and defend a personal position;	
making and making	- ability to work in a team;	
decisions in	- control of own actions;	
unpredictable work	2) responsibility for decision-making in unpredictable	
and / or learning	conditions, including:	
contexts	- justification of own decisions by the provisions of the	
formation of	regulatory framework of the industry and state levels;	
judgments that take	- independence in the performance of tasks;	
into account social,	- initiative in discussing problems;	
scientific and ethical	- responsibility for relationships;	
aspects	3) responsibility for the professional development of	
organization and	individuals and/or groups of individuals, which involves	
management of	- use of professionally oriented skills;	
professional	- use of evidence with independent and correct	
development of	argumentation;	
individuals and groups	- mastery of all types of learning activities;	
ability to continue	4) the ability to continue learning with a high level of	
studies with a		
significant degree of	autonomy, which includes - the degree of mastery of fundamental knowledge;	
•		
autonomy	- independence of evaluative judgments;	
	- a high level of general learning skills;	
	independent search and analysis of information sources	00.01
	Good mastery of personality management competencies	90-94
	(two requirements not met)	
	Good mastery of personality management competencies	85-89
	(three requirements not met)	

Description of qualification levelRequirements for knowledge, proficiency/skills, communication, autonomy and responsibility		Indicator evaluation
	Good mastery of personality management competencies (four requirements not met)	80-84
	Good mastery of personality management competencies (six requirements not met)	
	Satisfactory mastery of personality management competencies (seven requirements not met)	
	Satisfactory mastery of personality management competencies (eight requirements not met)	
	The level of responsibility and autonomy is fragmentary	
	The level of autonomy and responsibility is unsatisfactory	

7 TOOLS, EQUIPMENT AND SOFTWARE

№ works (code)	Work title	Tools, equipment and software used in the work
TFEE-1	Linear DC circuits in steady state mode. Research of a branched circle by the method of transfor- mations	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-2	Linear DC circuits in steady state mode. Power transmission from active to passive two-port cir- cuits	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-3	Linear circuits of single-phase AC in steady state mode. Series connection of elements, voltage res- onance.	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-4	Linear circuits of single-phase AC in steady state mode. Parallel connection of elements, resonance of currents.	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-5	Linear circuits of single-phase AC in steady state mode. Magnetically coupled linear circuits of sin- gle-phase current in steady state mode.	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-6	Linear circuits of three-phase current AC in steady state mode. Symmetrical three-phase source and symmetrical load connected in a sym- metrical and asymmetrical wye	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-7	Linear circuits of three-phase current AC in steady state mode. Symmetrical three-phase source and symmetrical load connected in a sym- metrical and asymmetrical delta	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-8	Linear circuits of three-phase current AC in steady state mode. Asymmetrical three-phase source and symmetrical load connected in sym- metrical wye.	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-9	Linear circuits of polyharmonic current in steady state. Polyharmonic currents and voltages in sin- gle-phase circuits.	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-10	Linear circuits polyharmonic Polyharmonic cur- rents and voltages in three-phase circuits in steady state.	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope
TFEE-11	Classical and operator methods of analysis of transients in linear circuits with concentrated pa-	Study-research laboratory stand УІЛС-2, multimeter, oscilloscope

	rameters. Transients in the resistive-inductive	
	circuit	
TFEE-12	Classical and operator methods of analysis of	Study-research laboratory stand
	transients in linear circles with concentrated pa-	УІЛС-2, multimeter, oscilloscope
	rameters. Transients in the resistive-capacitive	
	circuit.	
TFEE-13	Classical and operator methods of analysis of	Study-research laboratory stand
	transients in linear circles with concentrated pa-	УІЛС-2, multimeter, oscilloscope
	rameters. The discharge of the capacitor on the	
	resistive-inductive circuit	
TFEE-14	Branched nonlinear DC circuit.	Study-research laboratory stand
		УІЛС-2, multimeter, oscilloscope
TFEE-15	Inductance coil with steel core for alternating cur-	Study-research laboratory stand
	rent	УІЛС-2, multimeter, oscilloscope
TFEE-16	Self-oscillation in a nonlinear circle	Study-research laboratory stand
		УІЛС-2, multimeter, oscilloscope
TFEE-17	Parameters of an asymmetric quadrupole	Study-research laboratory stand
		УІЛС-2, multimeter, oscilloscope
TFEE-18	Homogeneous long line	Study-research laboratory stand
		УІЛС-2, multimeter, oscilloscope
TFEE-19	Electrostatic field modeling	Study-research laboratory stand
		УІЛС-2, multimeter, oscilloscope
TFEE-20	Magnetic field around a current-carrying conduc-	Study-research laboratory stand
	tor	УІЛС-2, multimeter, oscilloscope

8. RECOMMENDED SOURCES OF INFORMATION

1 Khilov V.S. Theoretical fundamentals of electric engineering. Підручник. / В. С. Хілов – Д., 2018. – 467 с.

2 Теоретичні основи електротехніки. Електричні кола: навч. посібник / В.С. Маляр. – Львів: Видавництво Львівської політехніки, 2012. – 312 с.

3 Теоретичні основи електротехніки. Усталені режими лінійних електричних кіл із зосередженими та розподіленими параметрами : підручник / Ю. О. Карпов, С. Ш. Кацив, В. В. Кухарчук, Ю. Г. Ведміцький ; під ред. проф. Ю. О. Карпова – Вінниця : ВНТУ, 2011. – 377 с.

4 Теоретичні основи електротехніки: Частина 1. Електричні кола постійного та змінного струму. Чотириполюсники [Електронний ресурс]: навч. посіб. для студ. спеціальності 141 «Електроенергетика, електротехніка та електромеханіка»/ КПІ ім. Ігоря Сікорського; уклад.: Ю. В. Перетятко, А. А. Щерба– Електронні текстові дані (1 файл: 21.7 Мбайт). – Київ : КПІ ім. Ігоря Сікорського, 2021. – 115 с

5 Овчаров В.В. Теоретичні основи електротехніки, частина 1. Мелітополь : Видавничо-поліграфічний центр «Люкс», 2007. 389 с.

6 Collection of methodical materials for laboratory work on discipline «Theoretical fundamentals of electrical engineering» for full-time students' majoring in 141 – Electric Power, Electrical Engineering and Electromechanical. Part 1 "Fundamentals of the theory of DC circuits"; "Fundamentals of the theory of harmonic single-phase currents" / V.S.Khilov; Dnipro University of Technology – D.: Dnipro-Tech, 2021. – 35 p.

7 Collection of methodical materials for laboratory work on discipline «Theoretical fundamentals of electrical engineering» for full-time students' majoring in 141 – Electric Power, Electrical Engineering and Electromechanical. Part 1 "Threephase circuits", "Polyharmonic currents and voltages in single-phase and three-phase circuits", "Transients in linear electric circuits" / V.S.Khilov; Dnipro University of Technology – D.: DniproTech, 2021. – 52 p.

8 Collection of methodical materials for laboratory work on discipline «Theoretical fundamentals of electrical engineering» for full-time students' majoring in 141 – Electric Power, Electrical Engineering and Electromechanical. Part 3 "Nonlinear electric circuits of direct and alternating currents", "Magnetic circuits", "Transients in circuits with nonlinear elements" / V.S.Khilov; Dnipro University of Technology – D.: DniproTech, 2021. – 30 p.

9 Collection of methodical materials for to independent and practical works on discipline «Theoretical fundamentals of electrical engineering» for full-time students' majoring in 141 – Electric Power, Electrical Engineering and Electromechanical. Part 1 «Theory fundamentals of dc and single-phase harmonic ac circuits» / V.S.Khilov; Dnipro University of Technology – D.: DniproTech, 2021. – 44 p.

10 Collection of methodical materials for to independent and practical works on discipline «Theoretical fundamentals of electrical engineering» for full-time students' majoring in 141 – Electric Power, Electrical Engineering and Electromechanical. Part 2 «Three–phase circuits, Polyharmonical voltages and currents in circuit, Transient analisis of a linear circuits» / V.S.Khilov; Dnipro University of Technology – D.: DniproTech, 2021. – 99 p.

11 Collection of methodical materials for to independent and practical works on discipline «Theoretical fundamentals of electrical engineering» for full-time students' majoring in 141 – Electric Power, Electrical Engineering and Electromechanical. Part 3 « DC and AC nonnlinear circuits, Magnetic circuits, Transients into circuits with nonlinear elements» / V.S.Khilov; Dnipro University of Technology – D.: DniproTech, 2021. – 35 p.

WORK PROGRAM OF THE ACADEMIC DISCIPLINE

«Theoretical foundations of electrical engineering » for bachelors of the educational and professional program «Electrical energetics, electrical engineering and electromechanics» of the specialty 141 Electrical energetics, electrical engineering and electromechanics

> Author: Viktor Serhiiovych Khilov

Editorial by the author

Prepared for publication Dnipro University of Technology. Certificate of registration in the State Register ДК № 1842 49005, Dnipro, Dmytra Yavornytskoho Ave. 19